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Things to know

• Convex function

• Gradient vector, Hessian matrix

• Sublevel set, Epigraph

• Equivalent definitions of convex function.
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Note

In the previous chapter, we discussed the definition of a convex set as a feasible set to consider

in optimization problems and explored several commonly used examples. In this chapter, we will

learn about Convex functions as the objective functions in optimization problems. Similar to

the previous chapter, it is essential for us to determine whether the objective function is a

Convex function in a given problem. To do so, we will study various sufficient conditions for

convex functions.
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Definition 1 (Convex function)

Let f : Rn → R and denote the domain of f by dom(f).

We call f convex function if

• dom(f) is convex

• for all x, y ∈ dom(f) and θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

If the strict inequality holds whenever 0 < θ < 1, we call f strictly convex.

Note that a convex function f is continuous on the relative interior of its domain.
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Example of convex functions

• Let f : x ∈ Rn 7→ Ax+ b ∈ Rm

• Let f : x ∈ Rn 7→ ‖x‖ ∈ R

• f(x) = (1/2)x>Px+ q>x+ r with P ∈ Sn+
• f : Rn × Sn → R defined as f(x, Y ) = x>Y −1x is convex on dom(f) = R× Sn++.

Some examples are proved by the definition of convexity. For some cases, the equivalent definition

of a convex function is helpful.
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Proposition 1

f is convex if and only if for all x ∈ dom(f) and all ν, g(t) = f(x+ tν) with

dom(g) = {t : x+ tν ∈ dom(f)} is convex.
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(proof)

(←) For arbitrary x1 and x2, we can choose t1, t2 6= 0 such that x1 = x+ t1v and x2 = x+ t2v

f(λx1 + (1− λ)x2) = f(x+ (λt1 + (1− λ)t2)v) = g(λt1 + (1− λ)t2)
≤ λg(t1) + (1− λ)g(t2)
= λf(x1) + (1− λ)f(x2).
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f(x) = (1/2)x>Px+ q>x+ r with P ∈ Sn+. Prove f is a convex function.

(proof) For an arbitrary v ∈ Rn let

g(t) = f(x+ tv) =
1

2
(v>Pv)t2 + (v>Px)t+

1

2
x>Px

Because of P ∈ Sn+, (v>Pv) ≥ 0, which completes the proof.
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Figure 1: Convex functions on R and R2
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Definition 2 (Gradient vector)

Let f : Rn → R be differentiable. The gradient vector of f on x is defined by

∇f(x) = ∂f(x)

∂x
=

(
∂f(x)

∂x1
,
∂f(x)

∂x2
· · · , ∂f(x)

∂xn

)>

Examples

• f(x) = 1
2x
>Ax+ b>x+ c,

• f(x) = − log(1 + exp(b>x+ c))
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Proposition 2 (Gradient as a directional derivative)

Let f : Rn 7→ R and suppose that

u = argmaxu∈Rn:‖u‖=1 lim
h→0

f(x+ hu)− f(x)
h

exists. Then, u is proportional to ∇f(x).
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(proof) For a fixed u with ‖u‖ = 1

lim
h→0

f(x+ hu)− f(x)
h

=
∂

∂h
(f(x+ hu))

∣∣∣∣
h=0

= ∇f(x)>u.

|∇f(x)>u| ≤ ‖∇f(x)‖‖u‖ = ‖∇f(x)‖ by Cauchy-Schwartz inequality and the equality above

holds when u ∝ ∇f(x). So, the u, the direction maximizing the infinitesimal change, is propor-

tional to ∇f(x).

The result of the directional derivatives shows that the direction of the acute angle to ∇f(x)
increases the value function.
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Property of the gradient vector

• Tangent space at x(k) : T (x(k)) = {x ∈ Rp : ∇f(x(k))>x = 0}
• Gradient vector at x(k) satisfies that

∇f(x(k))>x = 0

for x ∈ T (x(k)) by definition (orthogonal to tangent space).

• The gradient vector is the fastest direction to increase the value of the objective function

at the point x(k).

• To decrease the value of an objective function, it is possible to move the current solution

x(k) in the opposite direction of the gradient vector.
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Illustration of gradient vectors

Figure 2: Contour and gradient vector of an L(w): gray curve denotes the contour; the red point

denotes w∗; the red lines denote the gradient vectors
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Definition 3 (Hessian matrix)

Let f : Rn → R be twice differentiable. The Hessian matrix of f on x is defined by

∇2f(x) =
∂2f(x)

∂x>∂x
=


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

...
...

...
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂xn∂xn
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Hessian matrix as a linear map

The directional derivatives of ∇f(x) implies that

lim
h→0

∇f(x+ hv)−∇f(x)
h

= ∇2f(x)v

• Hessian matrix represents the map to produce the directional change of ∇f(x).
• ∇2f(x)v is approximated by

∇f(x+ hv)−∇f(x)
h

for small h.

• The positive definiteness of ∇2f(x) implies that all angles between directional derivative

of ∇f(x) and v are acute.
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Property of Hessian matrix

• When f is twice differentiable, the Hessian matrix is well defined.

• Hessian matrix is a symmetric matrix.

• The Hessian matrix is always non-negative definite?

ex) f(x1, x2) = x21/2 + x22/2− 4x1x2

• Cf) Talyor’s expansion of a twice differentiable f : Rn 7→ R.

f(x) = f(x0) +∇f(x0)>(x− x0) +
1

2
(x− x0)>∇2f(x∗)(x− x0),

where x∗ = hx+ (1− h)x0 is given by some h ∈ [0, 1].
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Proposition 3 (Characterizations of convex function)

All following statements are the characterization of a convex function.

1. f is convex on Rn.

2. f is convex on any restricted line of Rn.

3. (First order condition): If f is differentiable,

f(y) ≥ f(x) +∇f(x)>(y − x)

for all x, y ∈ dom(f).

4. (Second order condition): If f is twice differentiable, ∇2f(x) is non-negative definite.
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(proof) (1) ⇔ (2) is shown by Proposition 1. We will show (1) → (3). Let f be a convex and

differentiable function.

f((1− h)x+ hy) = f(x+ h(y − x)) for h ∈ (0, 1) and

lim
h→0

f(x+ h(y − x))− f(x)
h

= ∇f(x)>(y − x).

In addition,

f((1− h)x+ hy)

h
≤ (1− h)f(x) + hf(y)

h
.

Thus,

f(y)− f(x) ≥ ∇f(x)>(y − x).

Department of Statistics, University of Seoul Convex Optimization Problem III 20 / 35



(proof) (3)→ (1) Let z = (1− h)x+ hy.

f(y) ≥ f(z) +∇f(z)>(y − z)
f(x) ≥ f(z) +∇f(z)>(x− z)

By multiplying h and (1− h) to above inequalities respectively and adding them,

hf(y) + (1− h)f(x) ≥ f(z),

which completes the proof of (1)⇔ (3).
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(proof) (1) + (twice diff) → (4)

Let g(h) = f(x+ hv) for h ∈ R. Since f is convex, g(h) is convex for all x and v.

g′(h) = ∇f(x+ hv)v

g′′(h) = v>∇2f(x+ hv)v

Because of g′′(0) ≥ 0, v>∇2f(x)v ≥ 0
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(proof) (3)← ∇2f(x) is nnd.

By Taylor’s expansion,

f(y) = f(x) +∇f(x)>(y − x) + 1

2
(y − x)>∇2f(x∗)(y − x)

for a line segment x∗ between x and y.

Since ∇2f(x) is nnd,

f(y) ≥ f(x) +∇f(x)>(y − x)

In conclusion, we prove that (1)-(4) are equivalent definitions of the convex function.
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Theorem 4 (Monotone gradient condition for convexity)

Let f : Rn 7→ R be a differentiable function. Then, f is convex if and only of

(∇f(y)−∇f(x))>(y − x) ≥ 0.
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(proof) (→)

f(y) ≥ f(x) +∇f(x)>(y − x)
f(x) ≥ f(y) +∇f(y)>(x− y)

By summing the inequalities,

0 ≥ (∇f(x)−∇f(y))>(y − x).
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(proof) (←)

Let ga,b(t) = f(ta+ (1− t)b). We will show that ga,b(t) is convex for all a and b, which implies

that f is convex.

g‘a,b(t) =
∂

∂t
ga,b(t) = ∇f(ta+ (1− t)b)>(a− b).

g‘a,b(t)− g‘a,b(0) ≥ 0 for all t ∈ [0, 1] because

g‘a,b(t)− g‘a,b(0) = (∇f(ta+ (1− t)b)−∇f(b))>(a− b)

=
1

t
(∇f(ta+ (1− t)b)−∇f(b))>(ta− tb)

=
1

t
(∇f(ta+ (1− t)b)−∇f(b))>(ta− tb+ b− b)

≥ 0.

The inequality holds for the condition of f .
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f(x) = gx,y(1) = gx,y(0) +

∫ 1

0

g‘x,y(t)dt

≥ gx,y(0) +

∫ 1

0

g‘x,y(0)dt

= f(y) +∇f(y)>(x− y)
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Definition 5 (Sublevel set and epigraph)

• Cα = {x ∈ dom(f) : f(x) ≤ α} is called α sublevel set.

• If f is a convex function, its sublevel set is always convex.

• 하지만 sublevel set 이 convex라고 해서 함수 f가 convex인 것은 아니다. (f(x) = − exp(x))

• 참고: sublevel set은 f가 closed function을 정의할 때 사용됨! (후술함)

• Epigraph: {(x, t) : x ∈ dom(f), t ≥ f(x)} (Epi 라는 것이 above 라는 뜻이 있음)

• Epigraph가 convex set 인 것과 f가 convex function 인 것은 동치임.
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Proposition 4

f is convex on Rn if and only if the Epigraph of f is convex

(see the example 3.4 in p.76)
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(proof) (→) Let (x1, t1), (x2, t2) ∈ Epi(f).

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λt1 + (1− λ)t2

for λ ∈ [0, 1], and thus λ(x1, t1) + (1− λ)(x2, t2) ∈ Epi(f).

(←) For x1 and x2 let t1 = f(x1) and t2 = f(x2). Since Epi(f) is convex,

λt1 + (1− λ)t2 ≥ f(λx1 + (1− λ)x2)

for λ ∈ [0, 1], which completes the proof.
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Example 6 (with the second order conditions)

• f : (x, y) ∈ R× R++ 7→ x2/y is convex

• f : x ∈ Rn 7→ log(exp(x1) + · · ·+ exp(xn)) is convex.

• f : x ∈ Rn 7→ (
∏n
i=1 xi)

1/n is concave.

• f : X ∈ Sn++ 7→ − log(det(X)) is convex, where Sn++ is a set of n×n symmetric matrices.

(Proof) See p.73-74.
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Example 7 (with epigraph condition)

• f : (x, Y ) ∈ Rn × Sn++ 7→ x>Y −1x is convex.

(Proof) See p.76.
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Appendix

Cauchy Schwartz inequality

| < x, y > | ≤ ‖x‖‖y‖

(See Ch1. Angle and inner product. )

x>y = ‖x‖‖y‖ cos θ
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Appendix

A Hessian matrix H ∈ Sn++ if and only if

min
x∈Rn

x′Hx

x′x
> 0.

Note that minx∈Rn
x′Hx
x′x = min‖x‖=1 x

′Hx is the minimum eigenvalue of H.
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Appendix

Closed functions

A function f : Rn 7→ R is said to be closed if for each α ∈ R, the sublevel set

{x ∈ dom(f) : f(x) ≤ α}

is closed.

Note that [a,∞) is closed.
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